Compounds II-VI were prepared by the following general procedure. The tetracycline was added to a stirred mixture of the alcohol and aldehyde, and the mixture refluxed to give :a dear solution. The tine in each case was deternined br a prelinuinary small-scale reaction, followed closely by paper chusmatography. The solntion was allowed to cool, then taken t., dryness in vacuo, and worked up with muhydrous ether 'o a solid. Analytical samples were obtained by dissolving the crude solid in chloroform, then washing several times with water. 'The chloroform, after dryiug (Nas O_{4}), was evaporated io varo, :ind the residue was worked up with :mhydrome ether to vield the appropriate alkoxyalkyltetracycline.

N-(1-Methoxy)ethyltetracycline (II),-Tetracscliue (4.44 g., 0.01 mole), methanol ($\overline{i 5}$ mil.), and aceraldelyde (25 mi.) were reflused 2.5 hr. A portion (85%) of the cooled solution, when worked up, gave 1.5 g. of (mude II. From the ande nuateriad there was obtained 400 mg . of analyticelly pare If: $\lambda_{\text {wa }}{ }^{*}{ }^{3} 11 \mathrm{f}$ $218 \mathrm{~m} \mu(614,800), 270(19,100)$, and $360(12,100)$.
 Found: $\mathrm{C}, 59.64 ; \mathrm{H}, 5.99$; バ, 5.04, 5. $3 \geq$.
N-(1-Methoxy)propyltetracycline (III)...-A mixture of tetr: l cycline (8.88 g., 0.02 mole), methanol (150 ml .), and propionaldehyde ($5\left(\begin{array}{l}\text { mul. }\end{array}\right.$) was refluxed 2.5 hr . to give 3.65 g . of crude III. From 2.4 g . of crude material 250 mg . of analytically pure III was obtained: $\lambda_{n}^{0.1} .{ }^{126 T} 218 \mathrm{~m} \mu(615,600), 270(19,100)$, and 360 (13,900).

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{9}: ~ \mathrm{C}, 60.45 ; \mathrm{H}, 6.25 ; \mathrm{N}, 5.42$. Found: C, $59.70 ; \mathrm{H}, 6.39 ; \mathrm{N}, \overline{5} .65$.
\mathbf{N}-(1-Methoxy)methylchlorotetracycline (IV).--A mixture of chlorotetracycline ($24.0 \mathrm{~g} ., 0.15$ mole), methanol (300 mul), and a 46.5 solution of formaldehyde in meth:mol (100 mil.) was refluxed $4 \overline{0}$ nin. Work-up gave 19.3 g. of crude material. From 3.0 g . of crude material, 900 mg . of autytically pure It^{-}was
 (9140).
 18.78; N, 5.36. Fonlud: C, 54.85 ; H. 5.27; ($\mathrm{Cl}, 7.09 ; \mathrm{N}, 5.27$.
\mathbf{N}-(1-Methoxy)ethylchlorotetracycline (\boldsymbol{V}), \cdots A misture of chlorotetracycline (7.2 g., 0.015 mole), methanol (30 ml .), and acetaldehyde (15 ml .) was refluxed for 2.75 hr . Work-up gave 5.47 g . of crude material. From 2.0 g . of cmade prodnct, 8.201 gg .
 $268(18,200)$, and $370(10,210)$.
 $6.60 ; \mathrm{N}, 522$. Found: C, $5.44 ; \mathrm{H}, 5.22 ; \mathrm{Cl}, 6.52 ; \mathrm{N}, 5.22$.

N -(1-Methoxy)propylchlorotetracycline (VI). - A inixture of chlorotetracycline (9.6 g ., 0.02 mole), methanol (120 ml.), and propionaldehyde (40 mul.) was reflused 1.5 hr . Work-up yielded 9.7 g . of crude material. From 2.0 g . of cude material there
 ($\in 17,6(6), 266(18,150)$, and 370$)(10,2(0)$)
 6.44 ; $\mathrm{N}, 5.108$. Fonnd: C, 56.50 : $\mathrm{H}, 5.81 ; \mathrm{Cl}, 6.50 ; \mathrm{N}, 5.20$.

N-(1-Methoxy)methylchlorotetracycline (IV) Ethylenediamine Salt. - To IV (500 mg .) 0.96 mmole) was added 14 ml . of a 108 ; water-in-methanol solution. Triethytamine (0.28 mul) was added and the solution warmed to 20°. Next 2.0 ml , of an ethylenediamine-in-methanol solution (prepared by adding 1.6 ull. of ethylenediamine to 14.4 mll . of MeOH) was added, and after several minutes of stimring the erystalline salt appeared. After cooling and filtering, the rrysals were washed with a 10 ; water-in-methanol sonnion, then anhydrons ether, and dried.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{ClN}_{4} \mathrm{O}_{9}$: ($: 50.56$: $\mathrm{H}, 6.0 \overline{5}$; (1.
 9.59.

N-(1-Methoxy)ethylchlorotetracycline (V) Ethylenediamine Salt. Treatment of V, as above, gave the crystalline ethylenediamine salt of V.
-tnal. Caled. for $\mathrm{C}_{3}=\mathrm{H}_{3}-\mathrm{ClN}_{4} \mathrm{O}_{9}: ~(\mathrm{C}, 54.31 ; \mathrm{H}, 6.25$; Cl, 5.94: N, 9.38. Fonud: C, 33.9 : H, 5. 5 : Cl, 6.02 ; N, 9.24 .

I and Methanesulfonyl Chloride.--A solution of I (1 g., 1.:) munules) in pyridine (10 rul.) was cooled to 0°. To this was slowly added methanesulfonyl chloride (0.3 mi.) while the temperature was kept below 5°. The mixture was stired 1 hr . at $0-5^{\circ}$ and filtered. The filtrate was precipitated into anhedrous ether (40) mi.). The gummy solid obtained was washed several times with anhydrons ether, then worked np, by stimring with acetone. A solid wats ohtained which was shown to be manly I and some (etrarycline. The infraved spectrma showed iw) nitrile absomption at $4 . i: 3 \mu$.

Cinder identical conditions, tetraryeline was dehydrated at har. (:arbomande to give tetracerline witrile as the major product; as demoustrated by paper chronatography :and inftrated sper-

Various Alkoxyalkylation Attempts Followed by Paper Chromatography.. Reactions of tetracylines with ohber aheohols and aldehydes were carticed out as previously deseribed for 1 VI These were followed by paper chrountography, and in now
 readion produco were not elanaterized, but are believed tw
 which prosheed new remponnds as demomatiated by paper dhembatogriphy ate smanarized.
Terracerthe :and lormatdehyde reated with the bollowing
 α-hydroxyacetic acid. 2-phemylethand, lactic acid, sorbitol. and manimed. Tremarertime and medranol reacted with the Following addehyde: glyoxylic acid, :- -prydiucaldehyde. p niirobenzaldehyde, p-chlorobenzaldehyde, 2-furfural, :und chlome:wetaldehyde , Similarly 6-demethylletrarycline and methanol renced with formaldehyte and propionaldelyde.

Acknowledgment. . The authors are indebted to Mr. . Brancone, Mri. W. Fulmor, Mrr. A. Dornbinh. and $\backslash[r$. (i. Redin and their associates for the microanalyses, whaviolet analyses. microbiological as-ays. alld biological testing. reepectively.

Synthesis of Heterocyclic-Substituted Chromones and Related Compounds as Potential Anticancer Agents ${ }^{\text { }}$

Dorothy Donsellix, Rosalle Geoghfgan, Conor O'Brifex, Eva Phibbis, anio T. S. Wheeler ${ }^{2}$

Department or Chemistiy, C-niversity College, Dublin, Ireland
Hicerived June 10, 196.5
In continuing previous studices in this laboratory on the synthesis of potential anticancer agents, a further series of heterocyclic-substituted chromones and related compound: has been prepared and submitted for screening under the auspices of the Cancer Chemotherapy National Service Center.

The chromones were synthesized by a standard threc-step procedure involving (1) condensation of the appropriate 2 -hydroxyacetophenones with heterocyclic acid chlorides to form the esters listed in Table I. (2) Baker-Venkataraman rearrangement ${ }^{4}$ of these esters to the corresponding 1,3 -diketones listed in Table II, and (3) dehydrative cyelization of the diketones to the corresponding ehromones shown in Table III. The diketone, 1-(2-hydroxy-5-methoxy-phenyl)-3-(2-quinolyl)propane-1,3-dione, was not isolated in the pure state; Baker--Venkataraman rearrangement of the corresponding ester (II) gave an inseparable mixture of red and white products (pre-

[^0]Table I
2-Acyloxyacetophenones

No.	R1	R^{2}	R^{3}	R4	$\begin{gathered} \text { M.p. } \\ 0 \mathrm{C} \end{gathered}$	Yield, $\%$	Formula	C	H	Cl	N	c	For	C1	
1	OCH_{3}	OCH_{3}	H	2-Quinolyl	130	30	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}$	68.4	4.9		4.0	68.7	4.7		4.0
II	H	H	OCH_{3}	2-Quinolyl	176-177	40	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4}$	71.0	4.7		4.4	71.1	4.9		4.5
III	H	H	Cl	2-Quinoly	183-184	56	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	66.4	3.7	10.9		66.2	3.8	10.8	
IV	H	H	Cl	2-Pyridyl	128-129	50	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{3}$	61.0	3.7	12.9		61.2	3.7	12.9	
V	H	H	Cl	3-Pyridy	75-76	57	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{3}$	61.0	3.7	12.9		61.0	3.7	13.2	
VI	H	H	Cl	2-Furyl	82-83	89	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{4}$	59.0	3.4	13.4		59.0	3.5	13.9	
VII	H	H	Cl	2-Thienyl	80-82	89	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{3} \mathrm{~S}$	55.6	3.2	12.6		55.5	3.4	11.6	

Table II
Propane-1,3-diones

Table III
Chromones ${ }^{a}$

					M.p.,	Yield,									
No.	R^{1}	R^{2}	R ${ }^{3}$	R4	${ }^{\circ} \mathrm{C}$.	\%	Formula	C	H	Cl	N	C	H	Cl	N
XIII	OCH_{3}	OCH_{3}	H	2-Quinoly1	214-215	72	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{4}$	72.1	4.5	\ldots	4.2	71.9	4.5		3.9
XIV	H	H	OCH_{3}	2-Quinolyl	207-208	29	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{3}$	75.2	4.3		4.6	75.5	4.4		5.4
XV	H	H	Cl	2-Quinolyl	232-233	80	$\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClNO}_{2}$	70.3	3.3		4.6	70.6	3.3		4.7
XVI ${ }^{\text {b }}$	H	H	Cl	3 -Pyridyl	197-198	91	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{ClNO}_{2}$	65.2	3.1	13.8		64.8	3.2	13.9	
XVII	H	H	Cl	2-Furyl	210	87	$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClO}_{3}$	63.3	2.9	14.4		63.4	3.0	13.7	
XVIII	H	H	Cl	2-Thienyl	174-175	92	$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClO}_{2} \mathrm{~S}$	59.4	2.7	13.5		59.8	2.8	13.4	

${ }^{\circ}$ All chromones, except XVI, are new compounds. ${ }^{6}$ This compound, prepared by a different method, was reported ${ }^{6}$ with m.p. $187-188^{\circ}$.
sumably diketone and chromone) which was cyclized directly to the chromone XIV.

The related 2-hydroxyacrylophenones (XIXXXIV) ${ }^{\bar{a}-\overline{7}}$ were obtained from alkali-catalyzed con-

densation of the appropriate heterocyclic aldehydes with 5 -chloro--hydroxyacetophenone.
(5) R. Kuhn and H. R. Hensel, Chem. Ber., 86, 1333 (1953).
(6) A. C. Annigeri and S. Siddappa, Indian J. Chem., 2, 413 (1964).
(7) P. L. Cheng. P. Fournari, and J. Tirouflet, Bull. soc. chim. France, 2248 (1963).

Of chief interest among the compounds tested for anticancer activity in the earlier series, ${ }^{3}$ and so far in the present one, is 6-chloro-2-(2-quinolyl)chromone (XV). This displayed borderline, though significant, activity against Sarcoma 180 in all trials. No comparable degree of activity was shown by the other 2-(2-quinolyl)chromones (XIII and XIV) and this finding tempted us to correlate the activity of the compound with the presence of the chlorine atom in the molecule. Accordingly, we were interested in preparing the other chlorinated derivatives. The screening data available on these compounds are preliminary and, as with XV, both toxicity and antitumor activity varied unpredictably from test to test. Though final assessment awaits further testing, the preliminary results in many cases show a degree of reduction in tumor weight which suggests that there may be a

Table IV

 eslope $=$ difference in response for a tenfold difference in dose.
relationship between the ehloro-2-hydroxyphenyl-C-C-C-heterocycle (furyl excepted) type of structure and anticancer activity against the sarcoma and carcinoma systems which might be worthy of further investigation. No extension of this study can be carried out by us in the immediate future.

The sereening data of interest are summarized in Table IV. None of the esters tested (IV VII) were
active against any of the misual systems and all of the (ompounds tested were inactive against lymphatic leukemia L1210. The accrylophenones, XIX, XXIII, and XXIV, were inactive against Friend virus leukenia (solid form). These results are not included in Table IV. Some of the compound were also assayed for activity against the $K B$ cell line in tissue coltures hut none dowed any reproducible activity of interest
(i.e., $\mathrm{ED}_{50} \leq 4 \gamma / \mathrm{ml}$.). These results are included in Table IV for comparison.

Exporimental Section ${ }^{8}$

The preparation of the individual compounds listed below illustrates the general procedure for each class of compounds.

2-Acyloxyacetophenones (Table I). 5-Chloro-2-(2-quinolinecarboxy)acetophenone (III).-Quinaldoyl chloride (10.0 g ., 0.052 mole) in dry benzene (80 ml .) was added gradually to a well-stirred ice-cold solution of 5 -chloro- 2 -hydroxyacetophenone (8.9 g., 0.052 mole) in pyridine (70 ml .). After 24 hr . the mixture was added to excess dilute acetic acid. The product, which separated, crystallized from ethanol-acetone in needles. Melting points, per cent yields, and analyses are summarized in Table I. In the preparation of the esters IV-VII, the acid chloride was added dropwise to the pyridine solution of the acetophenone.

1 -(2 -Hydroxyphenyl)propane-1,3-diones (Table II). 1-(5-Chloro-2-hydroxyphenyl)-3-(2-quinolyl)propane-1,3-dione (IX). -Powdered KOH (2.5 g .) was added to a solution of $\overline{\mathrm{a}}$-chloro-2-(2-quinolinecarboxy)acetophenone (5.0 g .) in dry pyridine (100 ml .). The mixture was shaken vigoronsly for 20 min . and set aside for 12 hr . The crude product, liberated by the addition of cold dilute acetic acid, was washed with water. It crystallized from ethanol-acetone in yellow needles. Melting points, etc., are recorded in Table II.

Chromones (Table III). 6-Chloro-2-(2-quinolyl)chromone (XV).-1-(5-Chloro-2-hydroxyphenyl)-3-(2-quinolyl)propane-1,3dione (3.6 g .) in acetic acid (40 ml .) and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1 ml .) was heated on a steam bath for 15 min., poured onto crished ice, and nelutralized with $10 \% \mathrm{NaOH}$. The product which separated erystallized from ethanol-acetoue in needles. Melting points, etc., are recorded in Table III.

Acrylophenones. 5-Chloro-2-hydroxy-3-(4-pyridyl)acrylophenone (XXII).-Aqueous $\mathrm{KOH}(50 \%$, 10 ml .) was added to a solution of 5 -chloro-2-hydroxyacetophenone ($3.4 \mathrm{~g} ., 0.02$ mole) and pyridine-4-aldehyde ($2.1 \mathrm{~g} ., 0.02$ mole) in ethanol (50 ml .). After being stirred at room temperature for 12 hr ., the solution was neutralized with dilute acetic acid. The product, which separated, crystallized fronı alcohol in yellow needles, m.p. 143-144 ${ }^{\circ}$, vield 40%.
. nal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClNO}_{2}$: C, 64.7; $\mathrm{H}, 3.9 ; \mathrm{N}, 5.4$. Found: C, 64.5; H, 4.0; N, 5.5.

[^1]
Synthetic Spasmolytic Amines

Cieorge H. Cocolas, ${ }^{1}$ Socres Avaklan, and Gustay J. Martin

Research Laboratorics, Mational Drug Company, Philadelphia 44, Pennsylvania

Received February 8, 1965
A study of some isomeric hexyl- and heptylamines by Marsh, et al., ${ }^{2}$ indicated that N-methy: substitution of these primary amines enhanced spasmolytic action and increased muscle relaxant activity while having no effect on the pressor activity of the amine. One of the more potent spasmolytic amines is 2-(3-methylbutyl)amino 6-methylheptane (Octinum-D). ${ }^{3}$ A more recent study ${ }^{4}$ of N -alkyl-1,5-dimethylhexylamines has shown that these compounds exhibit some activity

[^2]against acetylcholine-induced spasms and against blood pressure lowering.

The pharmacodynamic action of these amines has been conveniently compared with that of the natural alkaloids, atropine and papaverine, in their ability to prevent spasms of isolated muscle when activated by acetylcholine or barium chloride solutions, respectively. More often than not, these amines possess both actions. The rather interesting pressor activity data of simple amines and the properties of such a compound as 2-(3-methylbutyl)amino-6-methylheptane ${ }^{5}$ prompted the synthesis of the compounds listed in Table I.

The secondary and tertiary amines were conveniently prepared by alkylating amines such as pyrrolidine, piperidine, morpholine, furfurylamine, and 2 -amino-methyl-1,4-benzodioxane with the appropriate alkyl bromides, e.g., isoamyl bromide 2-bromo-6-methylheptane, and 2-bromo-6-methylhept-5-ene.

The preparation of alkyl bromides was achieved by the reduction of the corresponding methyl ketone with potassium borohydride to give the secondary alcohol. Subsequent bromination of the alcohol with phosphorus tribromide gave the bromide.

The spasmolytic activity on isolated muscle tissue of the most active amines is listed in Table II. None of the amines tested were superior to either atropine or papaverine in spasmolytic activity.

Experimental Section ${ }^{6}$

Reduction of 6-Methylhept-5-en-2-one.-A solution of 16.2 g . (0.3 mole) of KBH_{4} in 100 ml . of water ${ }^{7}$ was added dropwise to a solution of 100 g . (0.8 mole) of 6 -methylhept-5-en- 2 -one ${ }^{8}$ in 200 ml , of methanol. The addition was made slowly to keep the temperature below 40°. After all the borohydride solution was added, the mixture was heated on a steam bath for 2 hr . and then coole. in an ice bath. A $1: 1$ solution of concentrated HCl and water (250 ml .) was then added to the reaction and the misture was allowed to separate. The aqueous layer was extracted with three 101 rml . portions of ether and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$. Distillation of the combined organic layers yielded 80 g . of 6 -methylhept-5-en-2-ol, b.p. $76-78^{\circ}$ (11 nin.).

Anal. Caled. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}: \quad \mathrm{C}, 74.94 ; \mathrm{H}, 12.58$. Found: C , $75.11,74.59$; H, 12.74, 12.48.
Reduction of 6-Methylheptan-2-one.-A similar procedure as that described above gave $7 \overline{5} \%$ of 6 -methylheptan-3े-ol, b.p. 74° (15 mm .) .

Anal. Caled. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 73.7 \mathrm{~s} ; \mathrm{H}, 13.99$. Found: C , 74.04, 74.38; H, 14.21, 14.51 .

Bromination of 6-Methylhept-5-en-2-ol-A mixture of 117 g . (0.91 mole) of 6 -nethylhept- 5 -en- $2-\mathrm{ol}$ and 35 g . (0.44 mole) of dry pyridine was cooled to -40° and kept at that temperature as 147 g . (0.52 mole) of PBr_{3} was added dropwise over a period of 3 hr. The mixture was allowed to stand overnight at room temperature and then distilled under reduced pressure. A fraction boiling at $66-85^{\circ}(17 \mathrm{~mm}$.) was washed with cold saturated NaHCO_{3} solution and extracted with 200 mll of ether. The extract was dried ($\mathrm{Na}_{3} \mathrm{SO}_{4}$) and distilled to yield $1: 34 \mathrm{~g}$. of 2 -bromo-6-methylhept-ī-ene, b.p. $85-86^{\circ}(27 \mathrm{nmm}), n^{20} \mathrm{D} 1.492^{2}$.
Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{1: 3} \mathrm{Br}$: C, $\overline{1} 1.2 \overline{7} ; \mathrm{H}, 7.91 ; \mathrm{Br}, 41.81$. Found: C, $50.84 ; \mathrm{H}, 8.12: \mathrm{Br}, 41.36$.
Bromination of 6 -methylheptan-2-ol,-Phosphorus tribromide (380 g ., 1.40 moles) was added over a period of 3 hr . to 17 g .

[^3]
[^0]: Institutes of Health. liethesda 14, Md.
 (2) Deceaserl.
 (3) P. F. Devict, A. T;money, and II. A. Viukare, A, Ory. Chome, 26. $+9+1$ (1961).

 ((16) 18).

[^1]: (8) Microanalyses were carried out by Mrs, E. M. Carey of the Department of Chemistry, Lniversity College, Dublin, and by Drs. Weiler and Strauss, Analytical Laboratory, Oxford, England.

[^2]: (1) School of Pharmacy, Eniversity of North Carolina, Chapel Hill, N. C. To whom requests for reprints should be addressed,
 (2) D. F. Marsl. A. Howard, and D. A. Herring. J. Pharmacol. Exptl. Therap., 103, 325(1951).
 (3) H. Hass. Arch. Exptl. Pathol. Pharmakol. 227, 71 (1955).
 (4) (a) Y. Ota, G. Otani, and R. Enomoto, Yakugaku Zasshi., 80, 1153 (1960): (1)) Y'. Ota. ibid. 81، 403 (1961).

[^3]: (5) (a) J. Paris and J. Vanlerenberghe, Compt. rend. soc. biol., 146, 265 (1950); (b) E. Savini, Arch intern. pharmacodyn., 82, 127 (1950).
 (6) Melting points were taken in a mineral oil bath with an open capillary and are corrected. The authors are indebted to Mr. Sidney Alpert and his associates of the Analytical section for carrying out the nitrogen (Dumas method) analyses.
 (i) Potassium borohydride solution was stabilized by the addition of a few drops of 1 N NaOH solution.
 18) Obtained from Givaudan-Delawatna. Inc., Phila.. Pa.. as methyllicptenone.

